<u>Cramic</u> LETTERS

NMP and O₂ as Radical Initiator: Trifluoromethylation of Alkenes to Tertiary β -Trifluoromethyl Alcohols at Room Temperature

Chao Liu,[†] Qingquan Lu,[†] Zhiyuan Huang,[†] Jian Zhang,[†] Fan Liao,[§] Pan Peng,[†] and Aiwen Lei^{*,†,‡}

[†]College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, P. R. China

[‡]State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Lanzhou 730000, P. R. China

[§]National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China

Supporting Information

ABSTRACT: A novel strategy was developed to trigger \cdot CF₃ by using *in situ* generated peroxide in NMP under O₂ or air as the radical initiator. Radical trifluoromethylation of alkenes was achieved toward tertiary β -trifluoromethyl alcohols. Various tertiary β -trifluoromethyl alcohols can be synthesized in good yields without extra oxidants or transition metal catalysts. Preliminary mechanistic investigation revealed that O₂ diffusion can influence the reaction rate.

F ree radicals have attracted extensive attention in organic synthesis, due to the presence of an unpaired electron that makes them highly reactive.¹ As an important research point of radical chemistry, the generation of radical species has been studied continuously. To date, transition metal catalysts, stoichiometric amount of oxidants, and organometallic reagents have been the most widely applied methodologies to initiate radicals.² Solely using molecular oxygen to initiate some highly active precursors to radicals has also been developed in recent years.³ However, it is always valuable to seek general and environmentally friendly methods to update these existing achievements.

Peroxides have been demonstrated as one of the most effective radical initiators.⁴ Nevertheless, the preparation of peroxides is an energy consuming process, and handling of concentrated peroxides is dangerous. Undoubtedly, if peroxides could be produced in situ, more environmentally friendly synthesis will be realized. It is well-known that peroxides widely exist in solvents such as terahydrofuran (THF), N-methyl-2pyrrolidone (NMP), etc., under an O_2 or air atmosphere.⁵ However, on one hand, these peroxides sometimes induce side reactions; on the other hand, the extremely slow generation process and low concentration make them hard to put into use. They are usually regarded as useless, harmful, and hazardous. Based on these conditions, in situ generated peroxides in solvents have been seldom utilized. Thus, new strategies making use of those undesirable and "harmful" peroxides would be meaningful, which would also deepen our understanding of radical initiators for both academic and industrial research.

To make the low-concentration in situ generated peroxides in solvents valuable, a suitable radical acceptor which can efficiently react with them might be the critical factor. We envisioned CF_3SO_2Na (Langlois reagent) would be a good choice. As an inexpensive, stable, easily handled, and stored trifluoromethylation reagent, CF_3SO_2Na has been extensively studied since the pioneering work by Langlois and co-workers in 1991.⁶ In many previous reports, CF_3SO_2Na can be oxidized to CF_3SO_2 . by many different oxidants, such as *tert*-butyl hydroperoxide (TBHP), PhI(OAc)₂, etc.,⁷ and then CF_3SO_2 . can easily decompose to $\cdot CF_3^{\ 8}$ with the release of SO₂. Those results inspired us to make use of the low-concentration peroxides in solvents by using CF_3SO_2Na as the radical acceptor. In this regard, we proposed a new strategy for the generation of $\cdot CF_3$ by utilizing NMP and O₂ together as the radical initiator (Scheme 1).

Scheme 1. New Strategy to Generate ${}^{\bullet}\text{CF}_3$ by Utilizing NMP and O_2 as Radical Initiator

To evaluate the practicality of our design, we attempted to use operando IR to monitor the conversions of CF_3SO_2Na in NMP and other solvents under an O_2 atmosphere. Indeed, in NMP, CF_3SO_2Na was gradually consumed along with the generation of CF_3SO_3Na , which was the oxidized product of CF_3SO_2Na initiated by CF_3SO_2 · under O_2 or air.⁹ The reason that the conversion of CF_3SO_2Na (51%) in NMP is bigger than the generation of CF_3SO_3Na (18%) is possibly due to the

Received:October 19, 2015Published:December 9, 2015

simultaneous desulfurization of CF_3SO_2 · to $\cdot CF_3$ (blue line in Figure 1). While use of other solvents, such as dimethylforma-

Figure 1. Kinetic profile of the reaction of CF_3SO_2Na (0.6 mmol) at 25 °C for 2 h in different solvents (4.0 mL) under 1 atm of O_2 (balloon). (A) The concentration of CF_3SO_2Na in different solvents. (B) The concentration of generated CF_3SO_3Na in different solvents.

mide (DMF) or ethyl acetate (EtOAc), resulted in no obvious consumption of CF_3SO_2Na and no obvious generation of CF_3SO_3Na (Figure 1). Additionally, no reaction occurred when conducting this experiment under a N_2 atmosphere in NMP (see Supporting Information (SI) for more details). These results indicated that the combination of NMP and O_2 are essential for facilitating the consumption of CF_3SO_2Na , which is consistent with our design in Scheme 1.

Based on the above IR experiment, we speculated that $\cdot CF_3$ might be generated upon mixing CF_3SO_2Na , NMP, and O_2 together. To verify our speculation, alkenes and alkynes were employed as radical acceptors to capture the $\cdot CF_3$. As shown in Table 1, the trifluoromethylation product was obtained in 53%

Table 1. Tested Acceptors for the Capture of $\cdot CF_3^{a}$

substrate	product	yield (%)
Ph	Ph OH CF3	53
Ph	Ph CF3	8
Ph-===	Ph CF3	trace
Ph	-	N.D.

^{*a*}All reactions were carried out using alkene or alkyne (0.2 mmol), CF_3SO_2Na (0.6 mmol), and NMP (2.0 mL) under an O_2 atmosphere at 25 °C for 2 h. Yields were determined by ¹⁹F NMR spectroscopy using PhCF₃ as internal standard. N.D. = not detected.

yield when α -methylstyrene was used. In contrast, α bromostyrene could only provide 8% trifluoromethylation product, and trace or no corresponding product could be observed when phenylacetylene or chalcone was employed. These results not only elucidated the generation of \cdot CF₃ but also suggested that the electrophilic \cdot CF₃ was more apt to add to electron-rich unsaturated compounds.

The above kinetic investigations and \cdot CF₃ capture experiments concluded that the combination of NMP and O₂ could be a novel initiation strategy for radicals. However, as described in Table 1, when this new radical initiation strategy was utilized in the synthesis of 4,4,4-trifluoro-2-phenyl-2-butanol (3aa) from α -methylstyrene (1a) and CF₃SO₂Na (2), only a moderate yield was obtained. To make this new strategy

more effective, several experiments were performed (for more details, see SI). Initially, different reaction temperatures were tested, and the results showed that room temperature gave the best yield. Reaction at 45 °C gave a similar result as that at room temperature, and higher temperatures did not work well. Solvent screening revealed NMP was the best choice since other solvents, such as toluene, resulted in no desired product. Finally, an excellent yield of 82% was obtained when the volume of NMP decreased from 2 to 1 mL. Further reducing the volume of NMP did not give a better result. Notably, no desired product could be detected when the reaction was carried out under a N_2 atmosphere, indicating that O_2 plays a vital role in this transformation.

Mechanistic investigations were performed to understand this highly selective transformation. As proposed in Scheme 1, the *in situ* generated hydroperoxide from the reaction of NMP and O₂ might be the key intermediate for initiating the \cdot CF₃, itself decomposing to *N*-methylsuccinimide (4aa) eventually. To verify our hypothesis, an ¹⁸O₂ labeling experiment of model reaction was conducted. Since the hydroperoxide was formed with the participation of O₂, ¹⁸O-labeled hydroperoxide or 4aa should be detected. As expected, ¹⁸O-labeled 4aa' was obtained in 16% yield and in 90% isotopic purity (Scheme 2; see SI for more details). Hence, hydroperoxide might be produced and work as the vital intermediate for initiating \cdot CF₃.

^{*a*}Reaction was carried out using **1a** (0.2 mmol), **2** (0.6 mmol), and NMP (1.0 mL) at 25 °C for 2 h under ¹⁸O₂ atmosphere. Yield of **3aa** was determined by ¹⁹F NMR spectroscopy. Yield of **4aa** was determined by GC analysis.

Meanwhile, the model reaction under an ¹⁸O₂ atmosphere provides further chance to probe the vital role of O₂. As shown in Scheme 2, the ¹⁸O-isotopologue **3aa'** was obtained in 85% yield and in 92% isotopic purity. This result revealed that O₂ also acted as a reaction participant and was transferred into the final product. This is the first report of highly selective synthesis toward β -trifluoromethyl alcohols through the oxygenation process.¹⁰

It is well-known that the reaction between NMP and O_2 toward peroxide formation is slow at room temperature. Therefore, we conjectured that the concentration of O_2 should affect the reaction rate. In this regard, the kinetic behavior of O_2 was investigated by studying the reaction between **1a** and **2**. As shown in Figure 2, the reaction rate decreased by decreasing the concentration of O_2 or by slowing down the stirring rate under O_2 in NMP. These results fit well with our hypothesis, suggesting that O_2 diffusion can influence the reaction rate.

Additionally, the model reaction between 1a and 2 was also monitored by operando IR. Compared with the blank reaction in the absence of 1a, the conversion of 2 in the model reaction was faster than the one in the blank reaction (Figure 3), and the final conversions were 66% versus 51%. This result showed that 1a accelerates the consumption of 2, presumably because the alkene shifts the reaction equilibrium to accelerate the evolution of SO₂ by trapping the generated \cdot CF₃.

Figure 2. Kinetic profile of the reaction of 1a (0.2 mmol), 2 (0.6 mmol) at 25 °C for 2 h in NMP (4.0 mL) under different conditions. (A) The concentration of CF_3SO_2Na at different O_2 concentrations. (B) The concentration of generated CF_3SO_2Na at different stirring rates.

Figure 3. Concentration of CF_3SO_2Na under two different conditions. Red line: 1a (0.2 mmol) and 2 (0.6 mmol) in NMP (4.0 mL) at 25 °C for 2 h under 1 atm of O_2 (balloon). Black line: 2 (0.6 mmol) in NMP (4.0 mL) at 25 °C for 2 h under 1 atm of O_2 (balloon).

Based on the previous reports and the above-mentioned results, a tentative mechanism was proposed in Scheme 3.

NMP reacted with O_2 to generate the hydroperoxide intermediate, which serves as a radical initiator to oxidize CF_3SO_2Na to CF_3SO_2 · (I), itself decomposing to *N*methylsuccinimide (4aa) eventually. The radical I could react with O_2 toward the formation of CF_3SO_3Na or decompose to · CF_3 (II) with the evolution of SO_2 . The resulting II adds to 1a to afford the carbon-centered radical intermediate III, which would be further captured by O_2 and transformed into peroxide radical IV. This newly formed O-centered radical could also serve as an electron acceptor from 2 via a single electron oxidation process to intermediate V with the regeneration of I.¹¹ Finally, the desired product 3aa could be achieved after the hydrogen abstraction process and reduced either by 2 or by the extraneous reductant.

With an understanding of this NMP and O_2 initiated radical trifluoromethylation reaction, the generality of this transformation was evaluated, and the results are summarized in

Scheme 4. A series of α -substituted styrenes, such as ethyl, cyclopropyl, phenyl substituted styrenes and 1-phenyl-1-

Scheme 4. Substrate Scope of Trifluoromethylation of Alkenes a

^{*a*}Unless otherwise specified, all reactions were carried out using 1 (0.2 mmol), 2 (0.6 mmol), and NMP (1.0 mL) under different conditions. Yields are determined by ¹⁹F NMR spectroscopy, and yields of isolated products are shown in parentheses after PPh₃ worked. ^{*b*}1.0 mmol of CF₃SO₂Na, 2 mL of NMP for 12 h.

cyclohexene, afforded the desired products in moderate to excellent yields (3aa-3ae). α -Methylstyrene derivatives bearing either electron-withdrawing or -donating groups on the aryl ring provided the corresponding products 3af-3ap in good to excellent yields. A range of functional groups including OMe (3ah and 3ai), halogens (3al-3ao), and CF₃ substituents (3ap) were demonstrated to be well tolerated in this transformation. Notably, a thiophenyl substituent, which is easily overoxidized in oxidative conditions, was well tolerated in this method, giving the corresponding product 3ak in 67% yield. The heteroaryl substrate, 2-(prop-1-en-2-yl)thiophene, was also well-behaved to give the expected product 3aq in 36% yield. Notably, nonconjugated olefin, such as benzyl methacrylate, was suitable for this protocol, giving the desired product 3ar in 34% yield.

In conclusion, we have developed a novel strategy combining NMP and O_2 as the radical initiator to activate CF_3SO_2Na . By using this novel strategy, an aerobic radical trifluoromethylation of alkenes to tertiary β -trifluoromethyl alcohols was achieved. This protocol exhibits a broad substrate scope for the synthesis of various valuable β -trifluoromethyl alcohols at room temperature without extra oxidants or transition metal catalysts.

Kinetic investigations revealed O_2 diffusion can influence the reaction rate. Further studies on more mechanistic details are currently underway in our laboratory and will be reported in due course.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.5b03035.

The experimental procedure, characterization data, and copies of ¹H and ¹³C NMR spectra (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: aiwenlei@whu.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the 973 Program (2012CB725302), the National Natural Science Foundation of China (21390400, 21520102003, 21272180, and 21302148), the Hubei Province Natural Science Foundation of China (2013CFA081), the Research Fund for the Doctoral Program of Higher Education of China (20120141130002), and the Ministry of Science and Technology of China (2012YQ120060). The Program of Introducing Talents of Discipline to Universities of China (111 Program) is also appreciated.

REFERENCES

 (1) (a) Easton, C. J. Chem. Rev. 1997, 97, 53. (b) England, R. M.; Rimmer, S. Polym. Chem. 2010, 1, 1533. (c) Wille, U. Chem. Rev. 2013, 113, 813. (d) Jasperse, C. P.; Curran, D. P.; Fevig, T. L. Chem. Rev. 1991, 91, 1237. (e) Majumdar, K. C.; Debnath, P. Tetrahedron 2008, 64, 9799. (f) Iqbal, J.; Bhatia, B.; Nayyar, N. K. Chem. Rev. 1994, 94, 519.

(2) (a) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem., Int. Ed. 2011, 50, 11062. (b) Akindele, T.; Yamada, K.-i.; Tomioka, K. Acc. Chem. Res. 2009, 42, 345. (c) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 765. (d) Maity, S.; Zhu, M.; Shinabery, R. S.; Zheng, N. Angew. Chem., Int. Ed. 2012, 51, 222. (e) Snider, B. B. Chem. Rev. 1996, 96, 339. (f) Hu, M.; Song, R.-J.; Li, J.-H. Angew. Chem., Int. Ed. 2015, 54, 608. (g) Tang, S.; Liu, K.; Liu, C.; Lei, A. Chem. Soc. Rev. 2015, 44, 1070. (h) Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464. (i) Liu, C.; Liu, D.; Lei, A. Acc. Chem. Res. 2014, 47, 3459.

(3) (a) Lu, Q.; Zhang, J.; Wei, F.; Qi, Y.; Wang, H.; Liu, Z.; Lei, A. Angew. Chem., Int. Ed. 2013, 52, 7156. (b) Lu, Q.; Zhang, J.; Zhao, G.; Qi, Y.; Wang, H.; Lei, A. J. Am. Chem. Soc. 2013, 135, 11481.
(c) Montevecchi, P. C.; Navacchia, M. L.; Spagnolo, P. J. Org. Chem. 1997, 62, 5846.

(4) Tōgō, H. Advanced Free Radical Reactions for Organic Synthesis, 1st ed.; Elsevier: Amsterdam Boston, 2004.

(5) (a) Tada, N.; Ishigami, T.; Cui, L.; Ban, K.; Miura, T.; Itoh, A. *Tetrahedron Lett.* **2013**, *54*, 256. (b) Drago, R. S.; Riley, R. J. Am. Chem. Soc. **1990**, *112*, 215.

(6) (a) Langlois, B. R.; Laurent, E.; Roidot, N. Tetrahedron Lett. **1992**, 33, 1291. (b) Langlois, B. R.; Laurent, E.; Roidot, N. Tetrahedron Lett. **1991**, 32, 7525. (c) Clavel, J.-L.; Langlois, B.; Laurent, E.; Roidot, N. Phosphorus, Sulfur Silicon Relat. Elem. **1991**, 59, 169.

(7) (a) Wilger, D. J.; Gesmundo, N. J.; Nicewicz, D. A. Chem. Sci. **2013**, 4, 3160. (b) Li, Z.; Cui, Z.; Liu, Z.-Q. Org. Lett. **2013**, 15, 406.

(c) Jiang, X. Y.; Qing, F. L. Angew. Chem., Int. Ed. 2013, 52, 14177. (d) Li, Y.; Wu, L.; Neumann, H.; Beller, M. Chem. Commun. 2013, 49, 2628. (e) Lu, Q.; Liu, C.; Peng, P.; Liu, Z.; Fu, L.; Huang, J.; Lei, A. Asian J. Org. Chem. 2014, 3, 273. (f) Maji, A.; Hazra, A.; Maiti, D. Org. Lett. 2014, 16, 4524. (g) Ji, Y.; Brueckl, T.; Baxter, R. D.; Fujiwara, Y.; Seiple, I. B.; Su, S.; Blackmond, D. G.; Baran, P. S. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 14411. (h) Patra, T.; Deb, A.; Manna, S.; Sharma, U.; Maiti, D. Eur. J. Org. Chem. 2013, 2013, 5247. (i) Wei, W.; Wen, J.; Yang, D.; Liu, X.; Guo, M.; Dong, R.; Wang, H. J. Org. Chem. 2014, 79, 4225. (j) Deb, A.; Manna, S.; Modak, A.; Patra, T.; Maity, S.; Maiti, D. Angew. Chem., Int. Ed. 2013, 52, 9747. (k) Ye, Y.; Künzi, S. A.; Sanford, M. S. Org. Lett. 2012, 14, 4979. (1) Yang, Y.-D.; Iwamoto, K.; Tokunaga, E.; Shibata, N. Chem. Commun. 2013, 49, 5510. (m) Fennewald, J. C.; Lipshutz, B. H. Green Chem. 2014, 16, 1097. (8) (a) Zhang, B.; Mück-Lichtenfeld, C.; Daniliuc, C. G.; Studer, A. Angew. Chem., Int. Ed. 2013, 52, 10792. (b) Wang, X.; Ye, Y.; Zhang, S.; Feng, J.; Xu, Y.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2011, 133, 16410. (c) Wang, F.; Wang, D.; Mu, X.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2014, 136, 10202. (d) Parsons, A. T.; Buchwald, S. L. Angew. Chem., Int. Ed. 2011, 50, 9120. (e) Zhang, C.-P.; Wang, Z.-L.; Chen, Q.-Y.; Zhang, C.-T.; Gu, Y.-C.; Xiao, J.-C. Chem. Commun. 2011, 47, 6632. (f) Fujiwara, Y.; Dixon, J. A.; O'Hara, F.; Funder, E. D.; Dixon, D. D.; Rodriguez, R. A.; Baxter, R. D.; Herle, B.; Sach, N.; Collins, M. R.; Ishihara, Y.; Baran, P. S. Nature 2012, 492, 95. (g) Studer, A. Angew. Chem., Int. Ed. 2012, 51, 8950. (h) Wu, X.; Chu, L.; Qing, F.-L. Angew. Chem., Int. Ed. 2013, 52, 2198. (i) Li, Y.; Studer, A. Angew. Chem., Int. Ed. 2012, 51, 8221. (j) Nagib, D. A.; MacMillan, D. W. C. Nature 2011, 480, 224. (k) Egami, H.; Kawamura, S.; Miyazaki, A.; Sodeoka, M. Angew. Chem., Int. Ed. 2013, 52, 7841. (m) Sahoo, B.; Li, J.-L.; Glorius, F. Angew. Chem., Int. Ed. 2015, 54, 11577.

(9) Lu, Q.; Liu, C.; Huang, Z.; Ma, Y.; Zhang, J.; Lei, A. Chem. Commun. 2014, 50, 14101.

(10) Ingold, K. U.; Pratt, D. A. Chem. Rev. 2014, 114, 9022.

(11) Yasu, Y.; Koike, T.; Akita, M. Angew. Chem., Int. Ed. 2012, 51, 9567.